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1 Introduction

This paper investigates a method, known as the Proper Orthogonal Decomposition (written later as POD),
in which an optimal basis decomposition is found for a set of experimental or numerically simulated data.
Optimality implies that this basis is the most efficient way to capture the dominant components of an
infinitely dimensional process using finitely many modes. Before that, some background...

Despite the simplicity of the Navier-Stokes equations (NSE), low-dimensional modelling is called for due
to the complexity of the resulting fluid motion. In an incompressible, Newtonian fluid the NSE may be
written in terms of a rescaled velocity (u), pressure (p), density (ρ), and Reynolds number (Re based on
a suitable macroscopic length scale) as

∂u

∂t
+ u · ∇u =

1

ρ
∇p+

1

Re
∇2u; with ∇ · u = 0. (1)

You’ll notice that the NSE have infinitely many degrees of freedom, as they are partial differential
equations. It is stated without proof that the Fourier transform of the NSE indicates strong dynamic
coupling between Fourier modes, implying long distance interactions. [1]. In isotropic and homogenous
turbulence, flow structures have a range of length scales, suggesting many modes are necessary to model
their behavior. [2]. In contrast, flows with low Reynolds number or in constrained geometries have a set
of basic coherent structures which appear, disappear, then reappear again. [3] The POD is an unbiased
technique for finding the modes which can be suitably combined to form these coherent structures.

Our goal is to use the POD to provide a set of spatial basis functions, forming a low dimensional subspace,
onto which we can project our governing equations. The POD, in addition to providing an optimal basis,
orders each mode according to the descending content of some observable. When we expand in modes
which map position to streamwise velocity, this observable is the kinetic energy contained in that mode.
Given a descending energetic ordering of spatial basis functions, we can project our system onto a finite,
truncated set of highly energetic POD basis functions. Using this reduced basis, we aim to reconstruct
the coherent structures by dynamically mixing these POD modes.

In this paper, we will introduce the optimal basis for a general Hilbert space H. The abstract definition
will be useful for briefly touching on an example of Principal Component Analysis, a method which
produces an optimal basis for a finite dimensional cloud of data points. Principal Component Analysis (or
PCA) helps ground the notion of an optimal basis visually since the basis optimially captures the variance
of the cloud of data. Next we show how to find the POD modes given velocity data from numerical
simulation or experiment. The computational difficulty of the problem depends on the arrangement of
the velocity data. In one case we optimize for many grid points compared to time steps, in the other the
situation is reversed. Finally, we mention the importance of symmetry when finding the POD modes.

It is worth mentioning the sources from which this work is derived. The document is a synthesis of
ideas from ”Low-dimensional modelling of turbulence using the proper orthogonal decomposition: A
tutorial” by Troy Smith, et. al. [1] and the chapter ”Proper Orthogonal Decomposition” from the book
Turbulence, coherent structures, dynamical systems and symmetry by Philip Holmes, et. al. [4].
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2 Proper Orthogonal Decomposition

In this section, we define the POD generally because it is suited for further discussion across domains.
We define the POD in a Hilbert space H, with an inner product (·, ·). Let u, ϕ ∈ H where u represents
a typical data element from an ensemble {u(k)} and ϕ is chosen to be an optimal basis element. For
example, in turbulence u is a snapshot of the streamwise velocity for the system and ϕ is a particular
mode. Optimality is when ϕ is chosen such that the average error between u and the projection onto
the basis ϕ is minimized:

min
ϕ∈H

〈
||u− (u, ϕ)

||ϕ||2
ϕ||
〉

(2)

where || · || is the induced norm ||f || = (f, f)1/2 and 〈·〉 means ensemble average. Depending on the prob-
lem, ensemble average might be the time average or an average across several experiments. Minimizing
the average error for this projection is equivalent to maximizing the average projection of u onto ϕ,

max
ϕ∈H

〈
|(u, ϕ)2|

〉
||ϕ||2

, (3)

where | · | implies the absolute value. Now, equation (3) provides a solution for just a single function,
but we want a family of functions for the desired basis. I.e. we must use the calculus of variations.
We impose the constraint of ||ϕ||2 = 1. Recall that extrema are found when the functional derivative
vanishes for all variations, i.e. d

dδJ [ϕ+ δψ]|δ=0 = 0, δ ∈ R. The functional for this problem is

J [ϕ] =
〈
|(u, ϕ)2|

〉
− λ(||ϕ||2 − 1). (4)

From equation (3): recall that (f, g)∗ = (g, f),

d

dδ
J [ϕ+ δψ] |δ=0

=
d

dδ
[〈(u, ϕ+ δψ)(ϕ+ δψ, u)〉 − λ(ϕ+ δψ, ϕ+ δψ)]|δ=0

=
d

dδ
[ 〈(u, ϕ)(ϕ, u) + (u, ϕ)(δψ, u) + (u, δψ)(ϕ, u) + (u, δψ)(δψ, u)〉

− λ {(ϕ,ϕ) + (ϕ, δψ) + (δψ, ϕ) + (δψ, δψ)} ]|δ=0

= 〈(u, ϕ)(ψ, u) + (u, ψ)(ϕ, u)〉 − λ {(ϕ,ψ) + (ψ,ϕ)}
= 2Re [〈(u, ψ)(ϕ, u)〉 − λ(ϕ,ψ)] = 0.

The final few steps require interchanging the order of the ensemble average and the inner product as well
as the definition of a new linear operator R(·) := 〈(·, u)u〉. Now we have

〈(u, ψ)(ϕ, u)〉 − λ(ϕ,ψ) = 〈((ϕ, u)u, ψ)〉 − λ(ϕ,ψ) (5)

= (〈(ϕ, u)u〉 , ψ)− λ(ϕ,ψ) (6)

= (Rϕ− λφ, ψ) = 0. (7)

Finally, since ψ was an arbitrary variation, we are left with the eigenvalue problem

Rϕ = λϕ. (8)

The optimal basis, defined above, is the set of eigenfunctions
{
ϕ(n)

}
of the operator R which is defined

based on the empirical data u from data ensemble {u(k)}. The eigenfunctions are called the POD modes.
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3 Principal Component Analysis
Proper Orthogonal Decomposition in Finite Dimensional Spaces

Principal Component Analysis (PCA) is a special case of the general method defined above which we
are calling the POD. Specifically, let H = RN and use the standard inner product (x,y) = yTx. PCA
applies to cases in which the data is a collection of M vectors u(k) ∈ RN , in other words each data point
is a collection of N observations. In contrast to the POD which delivers optimal modes, PCA delivers
optimal axes, or principal axes, for the cloud of data points. It can also be thought of as fitting an
n-dimensional ellipsoid to the data.

In particular, PCA is commonly used in exploratory data analysis and dimension reduction. Since the
principal axes are ordered according to the variance along that axis it is often appropriate to truncate
axes which have low variance without significant loss of information. In exploratory data analysis this
is thought of as viewing the most informative axes of the data. The purpose of this section of the
document is to ground the POD modes into something clearer and more visual. Since PCA and the
POD are really the same process just applied to finite dimensional samples and infinite dimensional
partial differential equations respectively, we can learn a lot of intuition from understanding PCA. After
showing the mathematics, we briefly present an example with samples from a multivariate Gaussian
distribution and from images of faces.

It is considered standard practice to first make the data mean free by subtracting the mean from each
observation ũ(k),

u(k) = ũ(k) −
1

M

M∑
k=1

ũ(k). (9)

Depending on the situation, some practitioners also whiten the data by normalizing each axes’ variance
to one. In this finite dimensional space our operator R becomes

Rx =
1

M

M∑
k=1

uT(k)xu(k) (10)

R =
1

M

M∑
k=1

u(k)u
T
(k) (11)

Rij =
1

M

M∑
k=1

u(k),iu(k),j (12)

where i, j are indices. Notice that in this caseR is a symmetricN×N correlation matrix
〈
uuT

〉
. Equation

(8) becomes a regular eigenvalue problem in RN . The calculation of these eigenvalues is usually done
using the singular-value decomposition on X =

[
u(1) ... u(M)

]
because it can be done in fewer calculations

than determining the correlation matrix
〈
uuT

〉
then doing an eigenvalue decomposition on

〈
uuT

〉
.

3.1 PCA Examples

Now we present two simple examples of PCA in action. In figure 1 on the left side, a contour plot of the
probability density function of the distribution is plotted. On the right side, 2000 samples were drawn
from a multivariate Gaussian distribution with mean, µ = [0, 0]

T
, and correlation matrix,

uuT =

[
1.25 0.875
0.875 1.0625

]
. (13)
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Figure 1: A contour plot of a multivariate Gaussian’s probability density function is plotted in two
dimensions in the left panel. 2000 samples were drawn from the same distribution and plotted on the
right, along with the two principal component vectors. The length of the vectors were scaled up for
visibility but the magnitude ratio is accurate. It’s important to remember that PCA has no access to
the distribution itself, only the samples drawn from it.

The red arrows represent the PCA axes with the relative variance proportional to their relative lengths.

The next example is from the field of computer vision, specifically, facial recognition. The set of grayscale,
100× 100 pixel images of human faces exists in R10000; however, the manifold in which most samples lie
is significantly lower in dimension. As you can see in figure 2, only 16 PCA eigenvectors already recreate
a face fairly accurately. Images from [5].

Figure 2: On the left, samples of grayscale, 100× 100 pixel images of human faces. On the right are the
first sixteen eigenvectors generated using PCA successively added together to recreate a face. [5].

4 Using the POD modes in Turbulence

In the problems with constrained geometries, we often consider the scalar streamwise velocity u(x) to
produce the POD modes for the recreation of coherent structures. In this domain, let H = L2([0, 1])
with inner product
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(f, g) =

∫ 1

0

f(x)g∗(x)dx. (14)

For an ensemble of scalar-valued functions u(x), our eigenvalue equation 8 becomes

Rϕ(x) =

∫ 1

0

〈u(x)u∗(x′)〉ϕ(x′)dx′ = λϕ(x); (15)

the kernel of this integral equation is the averaged autocorrelation function R(x, x′) = 〈u(x)u∗(x′)〉. We
will discuss the autocorrelation function again briefly in section 5 because the behavior of the autocor-
relation function can indicate that certain symmetries exist in our problem.

We will not discuss the expansion further, but simply take it as assumed that R is ”well behaved” enough
for it to generate the POD modes in a sensible way. In particular, the POD modes are orthogonal with
respect to the inner product (14) and optimal in the sense of capturing, on average, the greatest possible
fraction of the total kinetic energy for a projection onto a given number of modes. By considering a
something other than velocity for u(x), we could compute different POD modes which optimally represent
a different quantity than the kinetic energy. If you are curious about a more rigorous treatment of R
consider looking into [4].

Although we are working in the space H = L2([0, 1]), in practice, one solves (15) by transforming it into
a matrix eigenvalue problem through an appropriate discretization, then solving that problem using a
linear algebra software package. We present two methods for calculating the POD modes, the direct
method and the method of snapshots. Each method is better suited to a certain relative number of grid
points, ng, and observations or time-snapshots, NT , in the data ensemble. Although the direct method
subsection is more or less a quote from [1], we included it because it is the core step for determining the
POD modes. In the method of snapshots subsection directly following it, we present the purpose and
main result without an explicit derivation. By avoiding a quote, the author demonstrates comprehension
and acknowledges that the reader can simply consult [1, 4] if necessary.

4.1 Discretization: Direct method

We explicitly write our ensemble average as a time average of the NT snapshots and interchange the sum
and integral, we rewrite (15) as

1

NT

NT∑
k=1

u(k)(x)

∫
Ωx

u∗(k)(x
′)ϕ(x′)dx′ = λϕ(x). (16)

We approximate the integral over x′ using either the trapezoidal rule or Simpson’s rule. In both cases,
we can express the integral as

∫
Ωx

u∗(k)(x
′)ϕ(x′)dx′ =

nx∑
i=0

ωiu
∗
(k)(xi)ϕ(xi) = û∗(k)ϕ̂ (17)

where

û∗(k) =


√
ω1u

∗
(k)(x1)

√
ω2u

∗
(k)(x2)

...√
ωnxu

∗
(k)(xnx)

 , ϕ̂ =


√
ω1ϕ(x1)√
ω2ϕ(x2)
...√

ωnx
ϕ(xnx

)

 , (18)

and ωi are the weight functions for the particular quadrature method used. With these definitions we
may write (16) as
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1

NT

NT∑
k=1

u(k)(x)û∗(k)ϕ̂ = λϕ(x). (19)

In particular, this equation is satisfied at each of the nx grid points, xj :

1

NT

NT∑
k=1

u(k)(xj)û
∗
(k)ϕ̂ = λϕ(xj) for j = 1, ..., nx. (20)

Multiplying (20) by
√
ωj for each j = 1, ..., nx, we may write the resulting set of equations as a single

matrix-vector equation:

1

NT

NT∑
k=1

u(k)û
∗
(k)ϕ̂ := Ãϕ̂ = λϕ̂. (21)

This, the integral equation (16) becomes a symmetric (in general, Hermitian) eigenvalue problem for the
nx × nx matrix Ã. It is necessary to multiply the components of the resulting eigenvector by 1/

√
ωj

to get the POD modes
{
ϕ(n)

}
, but this requires very little computational effort. The modes may be

normalized to ensure that they are orthonormal. Depending on whether the trapezoidal or Simpson’s
rule is used, the POD modes found in this way have either O(∆x2) or O(∆x4) error, respectively.

4.2 Discretization: Method of snapshots

The purpose of the method of snapshots is to recast the problem by finding the eigenvalues of an NT×NT
matrix instead of an ng × ng one. For this reason, the method is best suited for problems where the
number of grid points is much greater than the number of time steps ng >> NT , i.e. three dimensional
domains over relatively short simulation periods. This situation is rather common because in three
dimensions the number of grid points scales like O(n3), yielding many grid points prima facia and also
increasing the complexity of each time step calculation.

The method of snapshots begins by letting

ci =

∫
Ωx

u∗(i)(x
′)ϕ(x′)dx′. (22)

We can rewrite (16) as

1

Nt

NT∑
j=1

cju(j)(x) = λϕ(x), (23)

which implies that we express the eigenfunctions as a linear combination of the time steps or ”snapshots.”
Next we multiply each side by u∗(i) and integrate to get

1

Nt

NT∑
j=1

cj

∫
Ωx

u∗(i)(x)u(j)(x)dx = λ

∫
Ωx

u∗(i)(x)ϕ(x)dx. (24)

If we assume that u∗(i) and u(j)(x) are linearly independent and we define

aij =

∫
Ωx

u∗(i)(x)u(j)(x)dx. (25)
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Then we have the NT ×NT eigenvalue problem in matrix form of

 a11 ... a1NT

... ...
aNT

... aNTNT

 c1
...
cNT

 = λ

 c1
...
cNT

 . (26)

In which the eigenvectors cn = [cn1 ...c
n
NT

]T with eigenvalues λ(n). To reconstruct the n-th eigenfunction
of the original problem, write

ϕ(n)(x) =
1

λ(n)NT

NT∑
j=1

cnj u(j)(x). (27)

For more details and further calculation steps please refer to [1, 4].

5 Symmetry Considerations

Symmetry can enter a fluid system through inherent geometry or assumptions and simplifications. Either
way, due to round-off, discretization, systematic, random, or other errors these symmetries are not
automatically preserved in the POD. Leaving these symmetries untreated can affect the degeneracy of
bifurcation points and even lead to multiple solution branches. For example, suppose that

ȧ = f(a;µ), (28)

with a ∈ Rn and µ ∈ Rm represent dependent variables and system parameters, respectively. Let G
describe a linear group acting on the dependent variables. We say that if

f(γa;µ) = γf(a;µ) (29)

for all γ ∈ G, then (28) is equivariant with respect to the group G. This is equivalent to the statement,
if a(t) is a solution to (28) then so is γa(t),∀ ∈ G. Assuming commutation of γ and the time derivative
as well as equivariance, we can see

ȧ = f(a;µ) (30)

γȧ = γf(a;µ) (31)

γȧ = f(γa;µ) (32)

d(γa)

dt
= f(γa;µ). (33)

Therefore a and γa are both solutions of f . That example was merely to highlight the importance of
considering symmetry when working with the POD. Now, let’s consider a specific, common example of
symmetry in fluid dynamics called homogeneity. When the averaged two point correlation R(x, x′) =
R(x − x′), i.e. R only depends on the difference of the two coordinates, it is called homogeneous
or translation invariant. Homogeneity occurs in spatially unbounded systems as well as systems with
period boundary conditions. In either case, the Fourier modes correspond exactly to the POD modes.
Consider the series

R(x− x′) =
∑

cke
2πik(x−x′). (34)

We simply solve 15 by substituting the unique representation
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R(x, x′) =
∑

cke
2πikxe2πikx′

, (35)

implying that {e2πikx} are exactly the eigenfunctions with eigenvalues ck. Going in the other direction,
if the eigenfunctions are the Fourier modes, we are allowed to define R using (35) which implies (34). In
other words, homogeneity completely determines the form of the empirical eigenfunctions. Nevertheless,
we use the data to determine the Fourier spectrum according to the POD.

6 Conclusion

In this paper we introduced the very basics of turbulence and the NSE as a motivation for studying
the POD. We discussed value of the POD in that it delivers a basis which, with early truncation, is
most efficient at capturing some value of interest. In the case of turbulence where u denotes streamwise
velocity, that value of interest was the kinetic energy. We proved the optimality of the POD modes in a
general Hilbert space and defined them using an eigenvalue problem. Next we applied the general POD
to a finite dimensional space where it is known as PCA. Here we included an original example as well as
another from computer vision. After that, we discussed the POD in the world of fluid dynamics in which
we showed multiple discretization methods. Finally we mentioned that symmetry must be considered
explicitly and gave an example where the form of the POD modes is determined by said symmetry.

One final remark, both [1, 4] make a point to mention that the POD modes are not exactly a complete
basis of L2(Ω) because they do not include the kernel of the operator R. We simply note that this is not
a necessary consideration since we are interested in physical modes which are included in the POD. For
further discussion we refer you to the sources previously mentioned.
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